\(设函数u=\frac{1}{r},(r=\sqrt{x^2+y^2+z^2}\neq 0).则方程\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2}=0成立.\)

\(设函数u=\frac{1}{r},(r=\sqrt{x^2+y^2+z^2}\neq 0).则方程\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2}=0成立.\)

本站整理有大量高等教育、资格考试类试题答案,Ctrl+D收藏备用!

答案解析